Главная страница Контакты Карта сайта Поиск по сайту:
Barque.ru
  • Судостроение
  • Моторы
  • Проекты
  • Спорт
  • Консультации
  • Кругозор
  • Истории
  • Главная
  • Моторы
  • Обслуживание моторов
  • 1974 год
  • Свеча зажигания вашего мотора
Подкатегории раздела
Описание моторов Устройство моторов Самодельные моторы Тюнинг моторов Обслуживание моторов Дистанционное управление


Поделитесь информацией


Похожие статьи
Проверка системы зажигания и свечей лодочного мотора
Улучшение системы зажигания мотора «Москва»
Электронная система зажигания для мотора «Вихрь»
Бесконтактная система зажигания для мотора «Вихрь»
Регулировка системы зажигания мотора «Москва»
Регулировка горючей смеси и зажигания мотора «Ветерок»
Электронная система зажигания мотора «Нептун-23»
Об электронной системе зажигания для подвесного мотора «Вихрь»
Проверка системы зажигания мотора «Ветерок»
Электронная система зажигания для гоночного мотора
Усовершенствование зажигания мотора «Ветерок»
Аварийный выключатель зажигания для гоночного мотора
Ртутный выключатель зажигания для мотора «Вихрь»
Новая система зажигания лодочного мотора «Вихрь-М»


Свеча зажигания вашего мотора

Год: 1974. Номер журнала «Катера и Яхты»: 51
          0


Один рывок за пусковой шнур, второй... десятый — мотор «глух и нем». Или, к примеру, лодка идет на полном газу, но вдруг «голос» мотора становится жестким, появляются перебои, без всяких видимых причин падают обороты и мотор умолкает. У каждого водномоторника в запасе, очевидно, не один десяток таких примеров. В чем причина большинства подобных неурядиц?

В двух приведенных выше «классических» случаях, когда и подача бензина нормальна, и магнето исправно, а мотор не работает, она скрывается в пренебрежении правилами технической эксплуатации свечей зажигания.

Что же представляет собой и в каких условиях работает запальная свеча — небольшая, но важнейшая деталь системы зажигания двигателя внутреннего сгорания с принудительным воспламенением рабочей смеси?

По принципу образования искры свечи бывают с воздушным искровым промежутком, со скользящей искрой и другие.

Информация об изображенииСовременная свеча зажигания
Современная свеча зажигания
 
Наибольшее распространение получили свечи с воздушным искровым промежутком, что объясняется простотой конструкции, технологичностью изготовления и вполне удовлетворительной работой их на современных двигателях.

Для форсированных спортивных и роторно-поршневых двигателей применяются свечи, конструктивно несколько отличающиеся от обычных. Из-за напряженного теплового режима этих двигателей для дополнительного снятия тепла потребовалась обмазка центрального электрода свечи термоцементом и установка между изолятором и корпусом медной втулки.

Наоборот, для улучшения работы двигателей на малых оборотах, при невысоких тепловых нагрузках, нашли применение свечи со «скользящей» искрой. У этой свечи искра проходит частично через воздушный зазор между торцом теплового конуса и корпусом, служащим боковым электродом, а частично по торцу теплового конуса; при этом происходит очистка его от нагара, наиболее интенсивно откладывающегося на свече именно на малых оборотах.


8 последнее время у свечи подобного типа делаются еще и продувочные окна на корпусе и устанавливается боковой «управляющий» электрод. 8се это препятствует отложению нагара и электрическому шунтированию искрового промежутка, что повышает надежность работы свечи. Некоторые ведущие зарубежные фирмы выпускают свечи с одним кольцевым зазором без управляющего электрода специально для электронных систем зажигания.

Вернемся, однако, к общеизвестной свече с искровым промежутком и посмотрим, в каких условиях она работает. Дальнейшее конструктивное совершенствование и форсировка двигателей предъявляет к свечам зажигания все более высокие требования. Свеча, как известно, вворачивается непосредственно в камеру сгорания двигателя и поэтому подвержена высоким тепловым, электрическим, механическим и химическим воздействиям. Температура газовой среды в камере сгорания меняется от 70°С при поступлении свежего заряда смеси в цилиндр до 2000—2700°С во время рабочего хода. 8 то же время наружная часть корпуса свечи омывается потоком наружного воздуха. Давление в цилиндре двигателя при рабочем такте достигает 50—60 кг/см2. Отсюда следует, что на торец свечи, выходящий в камеру сгорания, действует усилие, достигающее 120 кг, причем в некоторых случаях оно может быть равно и 300 кг. Кроме того, свеча подвергается и высоким вибрационным нагрузкам от работающего двигателя.

Информация об изображенииСвеча зажигания для спортивных двигателей
Свеча зажигания для спортивных двигателей
 
И тепловая, и механические нагрузки, действующие на свечу, периодические — при каждом обороте коленвала двухтактного двигателя, например, они меняются от минимальных до максимальных, что еще более ужесточает условия работы. Свеча, помимо того, находится под приложенным к ее электродам электрическим напряжением, равным пробивному напряжению искрового промежутка, которое может достигать 20 и даже 40 кВ в электронных системах зажигания.

Увеличение искрового промежутка из-за износа электродов, а также скругление острых кромок на центральном и образование кратера на боковом электроде приводят к увеличению пробивного напряжения и электрическом нагрузки на изолятор свечи. Износ электродов увеличивается также из-за химической коррозии от продуктов сгорания топлива.


Неполное сгорание топливной смеси ведет к отложению нагара на поверхности теплового конуса, электродах и стенках камеры свечи. Нагар образуется также из-за попадания смазочного масла на тепловой конус, особенно при работе свечи на двухтактном двигателе. Это отложение постепенно обугливается и становится токопроводящим — шунтирует искровой промежуток. При этом напряжение, развиваемое во вторичной цепи системы зажигания, может уменьшиться до такой степени, что станет меньше пробивного, а это приведет к нарушениям бесперебойности искрообразования и даже к полному его прекращению.

Нагар на тепловом конусе при нагреве его до определенной температуры — так называемой температуры самоочищения — сгорает, и работоспособность свечи восстанавливается. Для этого тепловой конус свечи должен иметь температуру 400—500°С.

С другой стороны, тепловой конус изолятора и центральный электрод не должны перегреваться при работе двигателя на полную нагрузку, так как при этом может возникнуть калильное зажигание. Температура возникновения калильного зажигания зависит от температурных условий в камере сгорания, состава топлива, площади накаленной поверхности и других факторов. Для большинства существующих конструкций свечей и применяемых в настоящее время топлив она колеблется в пределах 850—900°С. Калильное зажигание — неуправляемый процесс, который в первую очередь приводит к падению мощности двигателя. Длительная работа двигателя с калильным зажиганием может привести к аварии — прогару поршня, выпускного клапана, поломке коленчатого вала и т. д.

Информация об изображенииКонструкция свечи со скользящей искрой
Конструкция свечи со скользящей искрой
 
В самой свече может произойти выгорание электродов, хотя причиной тому может быть и не калильное зажигание. Выгорание электродов свечи чаще происходит в результате калильного зажигания не от свечи, а от перегретых деталей или нагара, находящегося в камере сгорания.

Как мы видим, для того чтобы свеча нормально работала и в то же время не давала калильного зажигания, температура теплового конуса должна находиться в пределах 400—900°С (так называемые «тепловые пределы работоспособности свечи»).


Поскольку условия работы свечи на двигателях с различной степенью форсировки существенно отличаются, а тепловые пределы ее работоспособности практически одинаковы, то невозможно сконструировать единую свечу, подходящую для всех двигателей. Поэтому свечи изготовляют с различными тепловыми свойствами, определяемыми тепловой характеристикой. Так как тепловая характеристика свечи зависит от многих факторов, то возникла необходимость в определенном критерии для ее оценки. Этим критерием является в настоящее время калильное число свечи.

Калильное число — отвлеченная величина, определяемая экспериментально для каждого типа свечей (она пропорциональна так называемому «среднему индикаторному давлению», при котором в цилиндре специальной моторной установки возникает калильное зажигание). Применение этого параметра в качестве оценочного позволяет создать тепловой ряд, в котором две соседние свечи отличаются на определенное количество единиц калильного числа.

При знакомстве с условиями работы свечей зажигания становится очевидным, что к материалам, идущим на их изготовление, предъявляются крайне высокие требования. Это — термическая и электрическая стойкость, высокая прочность, коррозионная устойчивость и т. д.

Информация об изображенииКонструктивные отличия свечей с различными тепловыми характеристиками
Конструктивные отличия свечей с различными тепловыми характеристиками
 
Изоляторы свечей отечественного производства изготовляются из керамики на основе окиси алюминия (Al2O3). К керамике, содержащей 75% Al2O3, относится «Уралит», из которого изготовляется большинство (около 90%) изоляторов, но в связи с тем, что «Уралит» обладает низкой теплопроводностью и, кроме того, при обжиге дает большой разброс размеров по геометрии изолятора (что приводит к отклонениям по тепловой характеристике), имеется тенденция к переходу на керамику с большим содержанием окиси алюминия.

Керамика, содержащая 95% Al2O3, получила названия «Синоксаль», «Боркорунд» и «Хилумина». Изоляторы свечей, изготовленные из этих материалов, более теплопроводны, термостойки и прочны. Из этих сортов керамики изготовлены свечи: А7,5БС, А6БС, СИ12, А7,5ХС.


К материалу для центрального электрода также предъявляются особые требования: он должен обладать высокой коррозионной и эрозионной стойкостью, жаростойкостью и окалиностойкостью, хорошей теплопроводностью, достаточной пластичностью, хорошей свариваемостью с обычной сталью, да еще при этом не быть слишком дорогим.

Наиболее полно отвечает этим требованиям сталь 13Х25Т, из которой в основном и изготовляются центральные электроды отечественных свечей. Для некоторых типов свечей применяют сплав Х20Н80 (нихром), а на центральные электроды свечей спортивных двигателей идет медь и серебро. Для бокового электрода, как правило, применяют сплав никель-марганец (например, НМц-5). Остальные детали свечи изготовляются из конструкционных сталей.

Интересно, что в то время как по мере совершенствования конструкций остальных узлов электрооборудования двигателей внутреннего сгорания срок службы их растет, у свечи он остается на прежнем уровне или даже уменьшается.

Информация об изображенииРадиопомехоподавительный наконечник свечи А14СУ
Радиопомехоподавительный наконечник свечи А14СУ
 
Если на двигателях с низкими удельными мощностями срок службы свечи достигает 1 тыс. часов работы, то на современных форсированных двигателях гарантийная наработка устанавливается не более 300 часов, а на двухтактных двигателях срок службы свечи исчисляется в 130—140 часов. Эти данные не абсолютны, но они позволяют достаточно объективно оценить реальный срок службы свечей.

Подбирать свечу к двигателю необходимо с учетом конкретных условий эксплуатации. Главным фактором при этом является температура теплового конуса, определяемая калильным числом. В любых случаях необходимо придерживаться рекомендаций завода — изготовителя данного двигателя. Особо внимательным надо быть при установке на двигатель свечей иностранных марок: методики определения калильного числа в разных странах несколько отличаются, отсюда и различие в маркировке (см. таблицу).



Можно дать некоторые общие рекомендации по подбору свечей для двигателя исходя из условий его работы.

Если предстоит длительное движение на максимальных оборотах, то можно рекомендовать после запуска и прогрева двигателя до рабочей температуры установить свечи с более высоким калильным числом («холодные»), которые обеспечат устойчивую работу в напряженном тепловом режиме. Но при этом нужно помнить, что запуск холодного двигателя на этих свечах будет весьма затруднен или вообще невозможен.

Если вы собираетесь ехать, не торопясь, а штатная свеча склонна к нагарообразованию и ее приходится часто чистить, то рекомендуем поставить свечу с ближайшим меньшим калильным числом (более «горячую»). Но не забудьте ее заменить на штатную при изменении режима движения: «горячая» свеча может вызвать калильное зажигание.

При пониженной температуре окружающего воздуха облегчит запуск двигателя установка свечей с возможно низким калильным числом, что конечно не исключает и других дополнительных мер (вспрыскивание легковоспламеняющихся жидкостей, регулировка карбюратора и т. д.).

При работе на топливах с присадкой тетраэтила свинца в качестве антидетонатора на тепловом конусе свечи постепенно образуются свинцовые отложения. Перегрев свечи для самоочищения в этом случае нежелателен, так как при высоких температурах эти отложения могут проникнуть в поверхностный слой керамики изолятора (образовать пленку свинцовистого стекла) и привести к возникновению трещин и даже разрушению теплового конуса изолятора.

Другое неприятное явление — это образование мостиков из свинца между центральным и боковым электродами. Это наблюдается в основном на двухтактных двигателях, что объясняется повышенным количеством остаточных газов, наличием в топливе смазочного масла и малыми скоростями газовых струй в зоне расположения электродов свечи. Наилучший способ борьбы с мостикообразованием — тщательный уход за свечой в процессе эксплуатации, регулярная очистка рабочей камеры свечи и искрового промежутка, а также своевременная его регулировка.

Каковы основные неисправности свечи, возникающие в процессе эксплуатации? Это — выгорание и износ центрального и бокового электродов, закапчивание, мостикообразование, трещины и сколы на изоляторе, нарушение герметичности соединений.

Выгорание электродов приводит к увеличению искрового промежутка. Свечу в этом случае желательно заменить на новую, но, если электроды не слишком износились, их можно зачистить, а искровой промежуток отрегулировать в соответствии с инструкцией по эксплуатации.

Свечи, покрытые нагаром, очищают бензином при помощи металлической кисточки или на специальном пескоструйном аппарате. Очистка свечи от нагара нагревом до температуры 700—800°С при помощи паяльной лампы или в костре недопустима, так как при этом нарушается ее герметичность. (На двигателях с малым рабочим объемом эта не-герметичность может привести к падению мощности и ухудшению запуска.)

Через каждые 100 часов работы на четырехтактном двигателе и 40—50 часов работы на двухтактном свечи необходимо снять, осмотреть, а в случае необходимости, очистить их и отрегулировать искровой промежуток.

Для обеспечения длительной надежной работы свечи двигатель должен находиться в удовлетворительном техническом состоянии. Особое внимание следует уделять регулировке карбюратора и систем зажигания по инструкциям, приложенным к двигателям.

Следует еще упомянуть о специальных приспособлениях для подавления радиопомех, возникающих при работе свечи, поскольку сейчас этому вопросу придается особое значение.

До последнего времени основным помехоподавляющим устройством был резистор 5—5,5 кОм, устанавливаемый непосредственно в высоковольтном наконечнике. Но такая защита не обеспечивала полного подавления радиопомех. Лучшие результаты дает применение металлического экрана на наконечнике с резистором. Так выполнен недавно разработанный специально для автотранспорта и подвесных лодочных моторов радиопомехоподавительный наконечник А14СУ. Этим наконечником комплектуется большинство выпускающихся в настоящее время подвесных моторов.


Понравилась ли вам эта статья?
+1

ПРЕДЫДУЩИЕ СТАТЬИ
Новая система зажигания лодочного мотора «Вихрь-М»
Реальность и перспективы подвесного водомета
Обзор зарубежных подвесных лодочных моторов 1973 года
Стационарный двигатель из подвесника на яхте
Ульяновские гоночные «Ветерки» «ГЛМ-3» и «ГЛМ-4»
Бесконтактная конденсаторная система зажигания для «Вихря»
Сверхмощный подвесной роторный мотор «Эвинруд»
Разборка и сборка мотора «Ветерок»
Исследование гидродинамики мотора «Вихрь»
Моторы «Кресчент» на выставке «Судотехника-73»
Дизельные подвесные моторы иностранного производства
Установка дистанционного управления на моторы «Нептун»
Как устроена система продувки двигателя
Репортаж от создателей лодочного мотора «Вихрь»
Замена коленвала на моторе «Вихрь»

ТЕКУЩАЯ СТАТЬЯ
Свеча зажигания вашего мотора

СЛЕДУЮЩИЕ СТАТЬИ
Репортаж от создателей лодочного мотора «Москва»
Испытания уровня шума подвесных моторов
Современные поворотно-откидные колонки
Испытания гидродинамики серийного мотора «Нептун-23»
Водометный мотор-весло «Мещера»
Регулировка редуктора моторов «Вихрь»
Репортаж от создателей лодочного мотора «Нептун»
Устройство подвесного мотора «Нептун-23»
Вихревой карбюратор для лодочного мотора «Вихрь-М»
Подвесной электромотор для маленькой лодки
Новый сорокасильный подвесной мотор фирмы «Терхи»
Электронный впрыск топлива для мотора глиссера
Дистанционное управление подвесным мотором «Привет-22»
Электростартер от «Запорожца» на моторе «Вихрь»
Охлаждение автомобильных конвертированных двигателей


Ссылка на эту статью в различных форматах
HTMLTextBB Code

Комментарии к этой статье


Еще нет комментариев



Сколько будет 13 + 21 =

       



Barque.ru © 2013 | Контакты | Карта сайта | Мобильная версия
Судостроение: Парусные суда Моторные суда Технологии Экранопланы
Моторы: Описание моторов Устройство моторов Самодельные моторы Тюнинг моторов Обслуживание моторов Дистанционное управление
Проекты: Парусные яхты Парусные катамараны Парусные тримараны Моторные лодки Катера Туристические суда Рыболовные суда Виндсерфинги и лыжи Прицепы и трейлеры Прочие проекты
Спорт: Новости спорта Парусные соревнования Водномоторный спорт Воднолыжный спорт Виндсерфинг Буерные соревнования Соревнования туристов
Консультации: Полезные устройства Полезные советы Улучшение судов Улучшение моторов Опыт эксплуатации Техника плавания Разбор аварий Рыболовам
Кругозор: Новые суда и устройства Интересные события Интересные факты Интервью Карты и маршруты Официальные данные Проблемы малого флота Яхт-клубы и стоянки Письма в редакцию
Истории: Путешествия Туристические походы Знаменитые корабли Военная страничка Литературная страничка История флота Прочие истории